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Modelling of spherical gas bubble oscillations
and sonoluminescence

By A. Prosperetti and Y. Hao

Department of Mechanical Engineering, The Johns Hopkins University,
Baltimore, MD 21218, USA

The discovery of single-bubble sonoluminescence has led to a renewed interest in the
forced radial oscillations of gas bubbles. Many of the more recent studies devoted
to this topic have used several simplifications in the modelling, and in particular
in accounting for liquid compressibility and thermal processes in the bubble. In
this paper the significance of these simplifications is explored by contrasting the
results of Lohse and co-workers with those of a more detailed model. It is found
that, even though there may be little apparent difference between the radius-versus-
time behaviour of the bubble as predicted by the two models, quantities such as
the spherical stability boundary and the threshold for rectified diffusion are affected
in a quantitatively significant way. These effects are a manifestation of the subtle
dependence upon dissipative processes of the phase of radial motion with respect to
the driving sound field. The parameter space region, where according to the theory
of Lohse and co-workers, sonoluminescence should be observable, is recalculated with
the new model and is found to be enlarged with respect to the earlier estimate. The
dependence of this parameter region on sound frequency is also illustrated.

Keywords: bubble dynamics; sonoluminescence;
acoustic caviation; rectified diffusion

1. Introduction

The intriguing phenomenon of single-bubble sonoluminescence (Gaitan & Crum
1990; Gaitan et al . 1992; Barber et al . 1997) has prompted a renewed interest in
the behaviour of oscillating gas bubbles. With few exceptions (see, for example, Lep-
oint et al . 1997; Longuet-Higgins 1996, 1997, 1998; Prosperetti 1997), the theoretical
studies devoted to the phenomenon have been based on the assumption of a spherical
bubble (see, for example, Kamath et al . 1993; Kondić et al . 1995, 1998; Moss et al .
1994, 1997; Chu 1996; Yuan et al . 1998). Among the models proposed, that of Lohse
and co-workers (Brenner et al . 1995, 1996; Lohse et al . 1997; Lohse & Hilgenfeldt
1997; Hilgenfeldt et al . 1996, 1998, 1999) stands out as it furnishes a comprehensive
picture of the phenomenon, free of adjustable parameters and capable of explaining
many of the experimental observations.

From the point of view of bubble dynamics, this model is of great interest as it
brings together a great many facets of the subject and can therefore serve as a unified
setting in which to study and demonstrate many of the physical aspects of oscillating
gas bubbles, such as mass diffusion, stability, and others. The specific purpose of the
present paper is to examine how the original results of Lohse and co-workers are
modified by the use of more realistic mathematical models for the various physical
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processes that it incorporates. Since, however, these processes are encountered widely
in fields such as acoustic cavitation, sonochemistry, and others, in spite of its focus
on sonoluminescence, the present paper can be expected to be relevant for other
phenomena as well. For additional background information on the forced oscillations
of gas bubbles, several reviews are available (see, for example, Plesset & Prosperetti
1977; Apfel 1981; Prosperetti 1984a, b; Leighton 1994).

According to the model of Lohse and co-workers the region of parameter space in
which sonoluminescence can be observed is bounded by several curves that describe
thresholds for rectified diffusion, stability of the spherical shape, temperature condi-
tions in the bubble, etc. After a presentation of the mathematical model for radial
oscillations in §§ 2–4, in the sections that follow we present results for these quan-
tities comparing them with those of Lohse et al . According to the interpretation
of single-bubble sonoluminescence that they propose, after an initial transient, the
bubble will remain filled only with an inert gas which, in experiments, would be most
commonly argon. Hence, in all our simulations (except one, where we compare with
data obtained with air bubbles), we shall assume the gas to be monatomic with a
ratio of specific heats γ = 5

3 and with the physical properties of argon.

2. The radial equation of motion

A useful form of the equation describing the radial dynamics of the bubble accounting
to first order for liquid compressibility was given by Keller and co-workers (Keller &
Kolodner 1956; Keller & Miksis 1980):(

1− Ṙ

cL

)
RR̈+ 3

2

(
1− 1

3
Ṙ

cL

)
Ṙ2

=
1
ρL

(
1 +

Ṙ

cL
+
R

cL

d
dt

)
[pB − P∞ − PS(t)] +O(c−2

L ). (2.1)

In this equation dots denote time derivatives, cL is the speed of sound in the liquid,
P∞ is the static ambient pressure, PS(t) is the imposed acoustic field pressure eval-
uated at the location of the bubble and pB is the pressure on the liquid side of the
interface. This quantity is related to the bubble internal pressure p by the balance
of normal stresses across the interface, namely

p = pB +
2σ
R

+ 4µ
Ṙ

R
, (2.2)

in which σ is the surface tension coefficient and µ the liquid viscosity. In this study
we take the sound field to be sinusoidal:

PS(t) = PA cosωt, (2.3)

with PA the acoustic amplitude and ω the driving angular frequency.
The issue of the compressibility corrections to the Rayleigh–Plesset equation was

examined in detail in Prosperetti & Lezzi (1986) and Lezzi & Prosperetti (1987).
There it was shown, by comparison with a numerical calculation fully accounting for
the liquid compressibility, that a preferable form made use of the equation of state
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of the liquid to write the equation in terms of the enthalpy†:(
1− Ṙ
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RR̈+ 3

2
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3
Ṙ

cL

)
Ṙ2

=
(

1 +
Ṙ

cL
+
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d
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)[
hB − 1

ρL
PS

(
t+

R

cL

)]
+O(c−2

L ), (2.4)

where

hB =
∫ pB

P∞

dp
ρ

(2.5)

is the liquid enthalpy evaluated in correspondence of the pressure pB at the bubble
surface. A widely used equation of state for liquids is the Tait form:

p+B

P∞ +B
=
(
ρ

ρL

)n
, (2.6)

where ρL = ρ(P∞) and n,B are constants having, for water, the values n = 7.15,
B = 3049.13 atm. With this equation of state we find

hB =
1

n− 1
(c2B − c2L), c2L = n

P∞ +B

ρL
, (2.7)

with c2B given by a similar formula with pB in place of P∞.
Superficially, equations (2.1) and (2.4) suffer from the unphysical behaviour that

acceleration and pressure difference have opposite sign when the bubble-wall Mach
number Ma = |Ṙ|/cL exceeds unity. In principle, the situation is quite clear: both
equations were derived under the assumption of small Ma, and therefore any wrong
behaviour at Ma ∼ 1 is not unexpected, but simply the consequence of pushing an
approximation beyond its domain of validity. In spite of this limitation, essentially
all the recent work on the application of spherical bubble dynamics to sonolumines-
cence has been based on some form of these equations‡. The argument is that one
encounters large velocities only over a minute fraction of the oscillation cycle and
therefore, provided some reasonable means of ‘interpolating’ the radial motion across
these short time intervals is used, the error should not be too large. For this reason, to
ameliorate the unphysical behaviour previously mentioned, many workers have used
the original form of Herring (1941; see also Cole 1948, ch. 8; Vokurka 1986; Ilinskii
& Zabolotskaya 1992), which replaces the offending terms (1 ± Ṙ/cL), (1 − Ṙ/3cL)
by unity (Löfstedt et al . 1993; Hilgenfeldt et al . 1996; Lohse & Hilgenfeldt 1997;
Matula et al . 1997). Thus, for example, the equation used in the work of Lohse and

† By the manner of the derivation of this equation, cL and ρL are to be evaluated at equilibrium
and treated as constants. According to an alternative form of the equation, obtained with the aid of the
so-called Kirkwood–Bethe approximation, cL is evaluated at the bubble surface using the local pressure
conditions. From a mathematical standpoint, the Kirkwood–Bethe approximation is not any better than
the small-Mach-number theory of the cited references, and therefore there is no a priori reason to prefer
a variable cL to a constant cL. The matter has not been explored on the basis of actual numerical
accuracy. Here we treat cL and ρL as constants, except in carrying out the integration in (2.5).
‡ An equation valid to the next order in Ma was given in Lezzi & Prosperetti (1987), but it fails to

shed much light on how to improve on (2.4) due to a severe lack of uniqueness.
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co-workers is†:

RR̈+ 3
2 Ṙ

2 =
1
ρL

(
1 +

R

cL

d
dt

)
(p− P∞ − PS(t))− 4µṘ

ρLR
− 2σ
ρLR

. (2.8)

Here we use what we believe to be a slightly better approximation, which avoids the
sign change of (1± Ṙ/cL) when |Ṙ/cL| crosses unity while still retaining the correct
information contained in these terms over the large fraction of the cycle where the
Mach number is small. We simply note that

1± Ṙ

cL
=

1
1∓ Ṙ/cL

+O(Ma)2, (2.9)

and therefore, when Ṙ/cL > 0, we write equation (2.4) as

1
1 + Ṙ/cL

RR̈+ 3
2

(
1− 1

3
Ṙ
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(2.10)

while when Ṙ/cL < 0, we write(
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(2.11)

The switching between the two forms of the equation is done when Ṙ goes through
zero, which preserves a desirable degree of continuity. One could also subject to the
same treatment the coefficient of Ṙ2, but, since in our simulations we have never
found a Mach number larger than about 2, this is unnecessary.

3. The bubble interior

The mathematical model for the bubble interior is described in detail in Prosperetti et
al . (1988), Kamath & Prosperetti (1989) and Prosperetti (1991). The model accounts
for the compressibility of the gas and heat transport by convection and by conduction
inside the bubble. The main assumptions, discussed below, are those of perfect-gas
behaviour and of spatial uniformity of the gas pressure.

The internal pressure p is found by integrating

ṗ =
3
R

[
(γ − 1)k

∂T

∂r

∣∣∣∣
R

− γpṘ
]
, (3.1)

where γ is the ratio of the specific heats of the gas and k is the gas thermal conduc-
tivity. The gas temperature field T (r, t) is obtained from

γ

γ − 1
p

T

(
∂T

∂t
+ v

∂T

∂r

)
= ṗ+

1
r2

∂

∂r

(
kr2 ∂T

∂r

)
, (3.2)

† It will be noted that this equation differs from (2.1) in the minor aspect that the terms arising from
the time differentiation of the surface tension and viscous contributions when (2.2) is substituted into
(2.1) are not retained.
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with

v =
1
γp

[
(γ − 1)k

∂T

∂r
− 1

3rṗ

]
. (3.3)

These results are exact under the hypotheses mentioned before.
In order to avoid dealing with the energy equation in the liquid, the gas energy

equation (3.2) is solved assuming that the liquid temperature at the surface of the
bubble remains undisturbed. In Kamath et al . (1993) it was shown that surface
temperature changes had only a minor effect. Here the acoustic pressures considered
are larger than in that study and the gas temperatures correspondingly higher. The
status of the approximation is thus not as clear. If liquid temperatures at the bubble
wall rise considerably, phase-change effects should be modelled. This problem has
received insufficient attention.

In deriving (3.2) the gas specific heat is assumed to be constant. Since the specific
heat of gases is an increasing function of temperature, this approximation will tend
to overpredict the gas temperature somewhat. For the temperature dependence of
the gas thermal conductivity k, we use the kinetic-theory result (Amdur & Mason
1958)

k = 0.265 26× 10−3T 0.74, (3.4)

where k is in W m−1 K and T in K.
As for the assumption of spatially uniform pressure, it of course rules out the

presence of shock waves. The recent results of Vuong et al . (1999) and Yuan et al .
(1998) cast some doubts on the formation of shocks. Furthermore, already in the
first study devoted to the matter, Trilling (1952) found that shock waves (if any) do
not affect the bubble-wall motion to any great degree, a conclusion that has been
confirmed more recently by Kondić et al . (1995). Moss et al . (1997) find that the
instant at which the radial motion reverses coincides with the arrival of the shock
reflected from the bubble centre to its surface. However, they do not attribute a
particular importance to this fact as the increase in gas pressure would in itself be
sufficient to stop the collapse of the bubble. Even if shocks are important for the
mechanism of sonoluminescent emission (a fact on which, as noted before, recent
research casts some doubt), they are not necessarily so for the other aspects of
bubble dynamics (stability, rectified diffusion, etc.) that are thought to establish the
conditions for the phenomenon to occur. Since our interest in the next sections is
in these latter aspects, we feel justified in adopting the assumption of a spatially
uniform internal pressure.

Lohse et al . use a simplified model for the calculation of the bubble internal pres-
sure and temperature. For the former they adopt the relation

p =
(
P∞ +

2σ
R0

)(
R3

0 − h3

R3(t)− h3

)K
, (3.5)

where h = R0/8.86 is the hard-core van der Waals radius for argon and the polytropic
index K is taken to be unity. They stress that this is ‘not an equation of state but
rather a process equation’. The justification is that, due to the smallness of the
bubble, over most of the cycle the gas in it is essentially isothermal, a conclusion
that is in agreement with the behaviour shown in figures 4 and 5. The brief instants
when conditions are different, they argue, are not going to have a significant impact
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on the bubble dynamics. Evidently, equation (3.5) is not adequate to estimate the
bubble-centre temperature Tc. For this purpose they use

Tc

T∞
=
(

R3
0 − h3

R3(t)− h3

)κ−1

, (3.6)

where the index κ is obtained from the linear-theory results of Prosperetti (1977a)
and Plesset & Prosperetti (1977) by substituting Ṙ/R in place of ω−1 in the expres-
sion of the Péclet number.

For the numerical solution of the previous model, the gas energy equation is trans-
formed into a set of ordinary differential equations by the Chebyshev spectral collo-
cation method described in Kamath & Prosperetti (1989), after which the final ODE
system is solved with the help of the subroutine LSODE. We used between 20 and
40 terms in the expansion depending on the acoustic pressure amplitude PA. For the
highest pressure amplitude, PA = 1.5 bar, we used an even greater number of terms,
finding essentially identical results. It was found that, if the number of expansion
terms was insufficient, the solution settled down to a mildly chaotic regime rather
than a periodic regime. A critical factor in the calculation was the use of a suffi-
ciently large number of outputs per cycle to capture the extremely short duration of
the temperature and velocity peaks.

4. Radial motion

Before proceeding to compare various quantities dependent on the radial motion,
we examine here how the radial motion itself depends on the different assumptions
discussed in the previous two sections. We choose a typical case studied by Hilgenfeldt
et al . (1996), namely R0 = 4 µm, PA = 1.4 bar, for which the driving is close to
the upper limit of the range of present interest. The other conditions are P∞ =
1 atm, ρL = 1000 kg m−3, µ = 0.001 kg m−1 s−1, σ = 0.07 kg s−2, T∞ = 20 ◦C,
ω/2π = 26.5 kHz and cL = 1481 m s−1. These same parameter values are also used
in the following. In all our examples we present results corresponding to steady-state
motion.

We first consider the effect of the different versions of the radial equation of motion,
using in all cases the model of § 3 for the calculation of the internal pressure and
temperature. Figure 1 shows the radius versus time during steady oscillations. All
the models give virtually identical results when plotted on this scale. To appreciate
the differences we need to focus on the short time interval around the first collapse.
Figure 2 is the radius versus time in this region. The solid line shows equations (2.10),
(2.11), the short dashes show (2.1), the dash-dotted line is (2.4) and the long dashes
show (2.8). Differences are small, but become noticeable if, in place of R, we consider
the radial velocity (figure 3) and the centre temperature (figure 4). The form (2.8) is
seen to predict a maximum value for |Ṙ| about a factor of two greater than the other
models, thus implying that the neglected terms of order Ṙ/cL, while small, have an
important effect when integrated over time. It is interesting to note from figure 4
that the corresponding centre temperature is, however, similar to that estimated on
the basis of the other models. This result is due to the fact that the model (2.8)
predicts a value of R̈ about 3.5 times greater than that given by (2.10), (2.11) with a
consequent stronger reduction of the implosion velocity. Other than in the immediate
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Figure 1. Radius versus time in the course of the steady oscillation of a 4 µm argon bubble under
the action of a sound field with an acoustic amplitude of 1.4 bar and a frequency of 26.5 kHz. The
solid line is the model (2.10), (2.11) and the (barely distinguishable) dashed line the model (2.8).
The lines corresponding to the models of equations (2.1) and (2.4) cannot be distinguished on
the scale of this figure. In all cases the internal pressure is calculated according to the complete
model of § 3.

Figure 2. An enlargement of the previous figure in the neighbourhood of the first collapse:
solid line, equations (2.10), (2.11); long dashes, equation (2.8); short dashes, equation (2.1);
dash-and-dotted line, equation (2.4).

vicinity of the successive collapses, the centre temperature is close to the undisturbed
value throughout the rest of the oscillations, as can be seen from figure 5.

In our earlier work (Kamath et al . 1993), we used a linear interpolation that well
represented the gas thermal conductivity data up to a maximum temperature of
about 3000 K, which is of the order of that encountered in that study, while here we
use (3.4). Although the difference between the two temperature dependencies is con-
siderable (for example, at a temperature of 50 000 K, (3.4) gives k = 0.797 W mK−1,
while the earlier form gives k = 1.61 W mK−1), the final effect on the radial dynam-
ics and the gas centre temperature is just a shift by about 0.4 ns of the instant
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Figure 3. The radial velocity of the bubble of figures 1 and 2 in the neighbourhood of the first
collapse illustrated in figure 2 as predicted by the models of § 2; in all cases the internal pressure
is calculated according to the complete model of § 3: solid line, equations (2.10), (2.11); long
dashes, equation (2.8); short dashes, equation (2.1); dash-and-dotted line, equation (2.4).

Figure 4. The centre temperature of the bubble of the previous figures in the neighbourhood
of the first collapse illustrated in figures 2 and 3 as predicted by the models of § 2; in all cases
the internal pressure is calculated according to the complete model of § 3: solid line, equa-
tions (2.10), (2.11); long dashes, equation (2.8); short dashes, equation (2.1); dash-and-dotted
line, equation (2.4).

at which the maximum values of these quantities are attained. Figure 6 shows the
temperature distribution in the bubble at the instants of maximum temperature as
predicted with the expression (3.4) for k (solid line) and the linear relation used in
our earlier work (dashed line).

Figures 7 and 8 compare the present model as given in equations (2.10)–(3.4),
with the simplified model of Lohse and co-workers as given in equations (2.8), (3.5),
(3.6), focusing only on the instants around the first collapse where the differences
are greatest. Figure 7 shows the radial velocity and figure 8 the centre temperature,
which are seen to be both greatly overpredicted by the simplified model†.
† We stress that the difference with the results presented in figures 3 and 4 is that there the complete
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Figure 5. Centre temperature versus time during the steady oscillation of the bubble of figure 1
according to the complete model of §§ 2 and 3. In order to show details of the lower-temperature
portion of the cycle, the vertical scale is not sufficiently extended to cover the maximum tem-
peratures shown in the previous figure.

Figure 6. Gas temperature as a function of y = r/R(t) at the instant of maximum temperature
as calculated with the gas thermal conductivity k given by (3.4) (solid line), and with k given
by a linear function of temperature (dashed line) for the conditions of figure 1.

Particularly during the last stages of the collapse, the behaviour of the gas in the
bubble can deviate from that of a perfect gas, a matter that cannot be examined
satisfactorily in the framework of our model. One can get a partial handle at least
on the covolume effect by comparing the results obtained assuming p to be given
by the adiabatic van der Waals relation, equation (3.5) with K = γ, with those
obtained from the standard perfect-gas adiabatic relation. If the comparison is made
at the same value of the acoustic amplitude PA, it is found that the two models
start deviating considerably for PA greater than 1.15–1.2 bar. Since, however, the
covolume effect depends on the minimum radius of the bubble, a more meaningful
comparison is one made for minimum radii in the range predicted by the complete

model of § 3 was used for the bubble interior, while here the internal pressure and temperature are
calculated from (3.5), (3.6).
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Figure 7. Comparison between the radial velocities given by the present model (solid line) and
by that of Lohse and co-workers (dashed line) for the case of figure 1. The corresponding centre
temperature is shown in the next figure. Unlike figure 3, where the only difference among models
lies in the radial equation, here the results shown by the dashed line have been obtained using
the relation (3.5) for the internal pressure.

Figure 8. Comparison between the centre temperatures given by the present model (solid line)
and by that of Lohse and co-workers (dashed line) for the case of figure 1. The corresponding
radial velocities are shown in the previous figure.

model. For example, for PA = 1.4 bar, which is close to the upper limit of interest
here, the complete model gives a minimum radius of 0.48 µm. With the adiabatic
perfect-gas model, the same minimum radius is found for PA = 1.105 bar and, for
this value of PA, the difference with the hard-core van der Waals gas is negligible.
The error induced by the neglect of the finite size of the molecules is therefore not
expected to be of great significance.

5. Stability of the spherical shape

The equation governing the linear stability of the spherical shape of a bubble in
a viscous liquid was derived in Prosperetti (1977b). This equation has an integro-
differential structure and its numerical solution is a matter of some complexity. A
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Figure 9. Comparison of the threshold for the parametric n = 2 instability as computed with
the present model (solid line) and the model of Lohse and co-workers (dashed line) with the
experimental data of Holt & Gaitan (1996) for air bubbles in water at a frequency of 20.6 kHz.

detailed description of the procedure and results will be published elsewhere (Hao
& Prosperetti 1999). Suffice it to say here that those results show that, after an
initial transient of a few cycles, the solution of the stability equation approaches
very closely the solution of a boundary-layer approximation of the form (Prosperetti
1977c; Hilgenfeldt et al . 1996)

än +
[
3
Ṙ

R
− 2(n− 1)(n+ 1)(n+ 2)

µ

ρLR2 + 2
n(n+ 2)2

1 + 2δ/R
µ

ρLR2

]
ȧn

+ (n− 1)
[
− R̈
R

+ (n+ 1)(n+ 2)
σ

ρLR3

+ 2(n+ 2)
µṘ

ρLR3

(
n+ 1− n

1 + 2δ/R

)]
an = 0, (5.1)

where an is the amplitude of the nth surface mode and the boundary-layer thickness
δ is approximated by

δ = min
(√

µ

ρLω
,
R

2n

)
. (5.2)

If we use in equation (5.1) the values of R(t) and its derivatives provided by
the mathematical model of the previous sections, we can calculate the parametric
instability threshold of the different modes. A comparison with the recent data of
Holt & Gaitan (1996) for air bubbles at a frequency of 20.6 kHz is shown in figure 9
for n = 2. Here the dots denote the data points corresponding to unstable modes
identified as corresponding to n = 2. The solid line is the prediction of the present
model and the dashed line that of Lohse and co-workers. It is clear that accounting
for the thermal effects, as we do, improves agreement with the data even though the
theoretical result is still somewhat below the data in the higher pressure amplitude
range. It is shown in Hao & Prosperetti (1999) that this residual discrepancy is
essentially removed if the exact integrodifferential formulation of viscous effects is
adopted.
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Figure 10. Comparison of the threshold for the parametric n = 2 instability as computed with
the present model (solid line) and the model of Lohse and co-workers (dashed line) for argon
bubbles at a frequency of 26.5 kHz.

Similar results for argon bubbles, in the higher pressure amplitude range of concern
for sonoluminescence, are shown in figure 10, where again the stability threshold is
increased by the effects included in the present model (solid line). In the parameter
range of present concern, it is found that higher modes are more stable than n = 2,
and therefore we do not show results for them.

A related instability mechanism, the so-called Rayleigh–Taylor instability, is also
possible. Like its plane counterpart, it is due to the destabilizing effect of a posi-
tive value of R̈ in (5.1), and is therefore most marked near the point of minimum
radius and the subsequent after-bounces. In contrast to the parametric instability,
that develops over many cycles, the Rayleigh–Taylor instability is sudden in its man-
ifestation and its effects may accumulate during the after-bounces following the time
of minimum radius, but not from cycle to cycle†. This feature renders an evaluation
of its impact on the phenomenon under consideration somewhat uncertain, as the
maximum growth of the surface disturbance can only occur over a limited time. As
a consequence, the maximum amplitude of the instability will depend on its initial
value. Hilgenfeldt et al . (1996) subject the solution of (5.1) to a random perturbation
of amplitude ca. 0.1 nm after each integration time step, and they declare the bubble
unstable when the maximum value of |a2/R| over a cycle exceeds unity. Here we pro-
ceed differently by introducing a non-zero right-hand side in the stability equation
(5.1). We have tried both a constant forcing and a superposition of the first hundred
harmonics of the driving sound frequency with random amplitudes and phases. To
present the results of these calculations for the model of Hilgenfeldt et al . (1996),
we show in figure 11 the maximum value of a2 over a cycle as a function of the
bubble equilibrium radius for a few values of the forcing pressure amplitude PA.

† Hilgenfeldt et al . (1996) distinguish between a Rayleigh–Taylor instability and an ‘after-bounce
instability’, which can be considered as a parametric instability developing over the after-bounce cycles.
This after-bounce instability will be all the more dangerous if the initial amplitude of the surface
perturbation—itself a consequence of the Rayleigh–Taylor effect due to the first collapse—is large. For
this reason we have not distinguished between the two instabilities, but we have grouped them together
under the label ‘Rayleigh–Taylor’.
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Figure 11. Maximum value reached by the amplitude a2 of the n = 2 shape mode due to the
Rayleigh–Taylor instability during one oscillation as predicted by equation (5.1) with a non-zero
right-hand side. The solid lines are for a constant forcing, and the dashed lines for a random
superposition of the first 100 harmonics of the driving frequency. The pressure amplitudes are,
in descending order, 1.4, 1.3 and 1.25 bar. The instability thresholds reported by Hilgenfeldt et
al . (1996) are R0 = 2.5, 4 and 4.5 µm, respectively.

Figure 12. Maximum value reached by the amplitude a2 of the n = 2 shape mode due to the
Rayleigh–Taylor instability during one oscillation as predicted by equation (5.1) with a constant
right-hand side for PA = 1.3 bar. The results shown by the solid line correspond to the bubble
radial dynamics predicted by the present model. The dashed line is for the model of Lohse and
co-workers. Note the logarithmic scale on the vertical axis.

Since the stability equation is linear, the absolute magnitude of the result is imma-
terial and we have adjusted the scale so as to show the great similarity of the results
given by the two methods of calculation. Qualitatively, for small radii, one finds a
mild amplification which, for a fairly sharply determined value of the equilibrium
radius R0, increases significantly. It would be possible to designate this value of R0
as the threshold for the manifestation of this instability. However, without a pre-
cise knowledge of the initial amplitude, it is impossible to say whether the resulting
amplification will lead to a break-up of the bubble or not.
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Figure 13. Rectified diffusion thresholds for argon bubbles in water at 26.5 kHz as computed
with the present model (solid lines) and the model of Lohse and co-workers (dashed lines). In
descending order, the lines correspond to PA = 1, 1.05, 1.1 and 1.15 bar.

Be that as it may, since, as already observed in § 4, the outward acceleration
R̈ of the model (2.10), (2.11) is much smaller than that of (2.8), and since the
after-bounces are strongly damped in our model, one would expect a far smaller
amplification of the surface deformation. The results of the integration of (5.1) with
R(t) predicted by the present model for a constant forcing are shown in figure 12,
where they are compared with those of Hilgenfeldt et al . (1996). Note that we have
had to recur to a logarithmic scale to present the two sets of results on the same
graph. This finding strongly suggests that the Rayleigh–Taylor instability is not a
concern with a thermofluid mechanic model of the bubble interior more precise than
that of Lohse et al . Hence, we shall not consider this instability further.

6. Mass diffusion

Lohse and co-workers used the following result, due to Fyrillas & Szeri (1994), for
the rectified diffusion threshold into a bubble immersed in a liquid with a dissolved
gas concentration C∞ far from the bubble:

C∞
C0

=
1

P∞ + 2σ/R0

∫ 2π/ω

0
p(t)R4(t) dt∫ 2π/ω

0
R4(t) dt

, (6.1)

where C0 is the saturation concentration, i.e. the equilibrium gas concentration corre-
sponding to the pressure P∞+2σ/R0. The averages over an oscillation cycle indicated
on the right-hand side are readily calculated on the basis of the results of the model
of §§ 2 and 3. We compare the results of the present model (solid lines) with those of
the model of Lohse and co-workers (dashed lines) in figures 13 and 14. The former
figure is for 1 6 PA 6 1.15 bar, while the latter is for 1.2 6 PA 6 1.4 bar. Each pair
of lines corresponds to a fixed pressure amplitude.

A qualitatively interesting difference between the two sets of results is the near-
absence of oscillations in the present model. The oscillations exhibited by the dashed
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Figure 14. Rectified diffusion thresholds for argon bubbles in water at 26.5 kHz as computed
with the present model (solid lines) and the model of Lohse and co-workers (dashed lines). In
descending order, the lines correspond to PA = 1.2, 1.25, 1.3, 1.35 and 1.4 bar.

lines are due to a form of resonance of the radial pulsations (Hilgenfeldt et al . 1996,
1998) that are suppressed by the more realistic damping of the radial motion embod-
ied in our formulation. Hilgenfeldt et al . (1996) discuss the possibility that these
oscillations give rise to multiple stable equilibria. It appears that, on the basis of the
present calculations, the consequences of this mechanism, if any, are minor.

Other than for this difference, the results of the two models are qualitatively
similar. For the stability of the bubble against mass diffusion, the interesting region
is that where the slope is positive. For a fixed C∞/C0, the present model shifts this
region somewhat to the left in the direction of smaller bubble radii.

7. Gas temperature and radial velocity

Two other parameters that arise in the theory of Lohse et al . are the radial velocity
and the gas temperature. In the theory of these authors the former should exceed
the speed of sound in the gas (estimated at the undisturbed temperature) for a shock
wave to develop, while the latter should exceed the dissociation temperature of the
non-inert gases in the bubble. For nitrogen this temperature is about 9000 K. The
corresponding thresholds are shown in figures 15 and 16. In both cases the results
given by the present model are lower than those of the model of Lohse and co-workers
in the range of pressure amplitudes of interest. To understand this behaviour we
show in figure 17 the normalized maximum radius during the steady oscillations as
a function of the equilibrium radius for an acoustic pressure amplitude of 1.3 bar.
The prominent maxima predicted by both models are due to the well-known rapid
disappearance of the inhibiting effect of surface tension with increasing radius (see,
for example, Flynn 1964, figure 10). Figure 17 shows that the model of Lohse et al .
results in a somewhat ‘stiffer’ bubble, with the result that the oscillation amplitude
is larger for the present model.

The maximum of figure 17 is essentially a dynamical analogue of the well-known
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Figure 15. Threshold for the bubble-wall velocity to exceed the speed of sound in the undisturbed
gas according to the present model (solid line) and the model of Lohse et al . (dashed line).

Figure 16. Threshold for the bubble-centre temperature to exceed 9000 K according to the
present model (solid line) and the model of Lohse et al . (dashed line).

static Blake threshold RB that, in the present model, would be given by

RB = 4
3

σ

| − PA| . (7.1)

For the case of figure 17, this expression gives RB = 0.72 µm. As shown by Akhatov
et al . (1997), this ‘dynamic Blake threshold’ is also essential to explain the minimum
in the diffusion threshold curves of figure 14 and, therefore, the diffusional stability
of the bubble.

8. The phase diagram

According to the model of Lohse and co-workers, stable sonoluminescence requires
that:
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Figure 17. Maximum bubble radius in the course of a steady oscillation normalized by the
equilibrium radius as a function of the equilibrium radius according to the present model (solid
line) and the model of Lohse et al . (dashed line). The acoustic pressure amplitude is 1.3 bar.

(A) the spherical shape be stable;

(B) the bubble be stable against mass diffusion;

(C) the centre temperature exceeds the dissociation temperature of the polyatomic
gases in the bubble; and

(D) the bubble-wall Mach number exceeds unity.

It has already been mentioned that more recent work (see, for example, Yuan et
al . 1998; Vuong et al . 1999; Hilgenfeldt et al . 1999) has considerably downplayed
the importance of shocks, in the first place because shocks may not form in typical
conditions, and also because they do not seem necessary to achieve temperatures
sufficient to explain the light emission. In any event, one finds that the thresholds
for (C) and (D) are very nearly coincident (as can be seen in figures 15 and 16),
so that one does not need to consider condition (D) specifically. It is also found in
the parameter range we have investigated that condition (B) is more stringent than
either (C) or (D). In effect, therefore, the boundaries for sonoluminescent emission are
dictated by conditions (A) and (B), the former responsible for the upper boundary,
the latter for the lower boundary.

These boundaries are plotted in figure 18, which shows in the concentration–
acoustic pressure plane the region for stable sonoluminescence at 26.5 kHz. As before,
the solid lines are the present results and the dashed lines those of Lohse and co-
workers. The lower boundary is practically unchanged. The upper boundary that
we find is shifted upward with respect to the model of Lohse et al . by a consider-
able margin. It would be interesting to investigate experimentally the new region of
parameter space suggested by the present calculations.

In figure 19, we compare the boundaries calculated by the present model for a
frequency of 26.5 kHz (solid) with those predicted at 15 kHz (short dashes) and at
40 kHz (long dashes). The frequency dependence is quite marked and appears to be
a potentially useful and stringent test of the theory.
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Figure 18. Phase diagram for stable sonoluminescence according to the present model (solid
lines) and the model of Lohse et al . (dashed lines) at 26.5 kHz.

Figure 19. Phase diagram for stable sonoluminescence according to the present model at
15 kHz (short dashes), 26.5 kHz (solid) and 40 kHz (long dashes).

9. Conclusions

In this paper we have examined several features of gas-bubble oscillations on the basis
of a mathematical model developed in our earlier papers. It has been found that, even
though the bubble-radius-versus-time predicted by various models does not exhibit
great differences, several derived quantities are affected more than expected. This
conclusion is due to the fact that the radius is obtained by carrying out a repeated
integration of the internal pressure, an operation that erases several details of the
time dependence of this quantity. Since the thresholds for rectified diffusion and
spherical stability depend directly on the pressure and the radial acceleration, they
are affected much more than the radius.

Our model for the bubble interior is less sophisticated than others used in the
literature (see, for example, Moss et al . 1994, 1997; Vuong & Szeri 1996; Vuong et
al . 1999; Yuan et al . 1998), but this has enabled us to present results for steady-
state oscillations. This is important as conditions in the bubble interior can differ
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considerably between the first cycle and the steady state (see, for example, Kamath
et al . 1992).

While the conclusions of any numerical calculation must be treated with care due
to the modelling aspects that are inherent to any such exercise, this is particularly
true in the case of large-amplitude spherical-bubble oscillations. In the first place,
sphericity is itself an issue in the presence of acoustic pressure gradients. Secondly,
uncertainties exist in the treatment of the liquid compressibility and temperature.
Thirdly, the thermofluid mechanics of the bubble interior always seems to probe the
mathematical models near their limit of validity or, more likely, beyond. The present
results are certainly not immune from these uncertainties and they should be con-
sidered more as establishing trends of variation of the various quantities. From this
point of view, the frequency dependence shown in figure 19 is particularly interesting.
Experiments at different frequencies would be of considerable interest in assessing
the importance of the neglected effects and the overall robustness of the model.

The authors thank Professor D. Lohse for clarifications about his methods and Dr R. G. Holt
and Dr F. Gaitan for making their shape stability data available. This study has been supported
by NASA and the Office of Naval Research.
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